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Conventional acoustic absorption spectroscopy- 5 in gases has been performed

using transducers such as quartz plates, microphones, etc. The use of transducers for

gases causes several limitations. The frequency response is usually limited to

< 1 MHz. Also, the frequencies are scanned point by point, and is thus slow and

unsuitable for transient conditions. Short-pulsed measurements are difficult because

of transducer ringing. Furthermore, transducers cannot be used in hostile

environments like flames. We describe here a new all-optical, pulsed and multiplexed

technique that avoids the above limitations, and is useful for acoustic absorption

spectroscopy of gases. This technique relies on the use of a short-duration laser pulse

to generate reliably a narrow acoustic pulse containing a broad Fourier frequency

spectrum; as this pulse propagates, the various Fourier components are absorbed

differently, resulting in pulse distortion that is probed by a focused CW laser beam.

Fast Fourier transform of the transient probe deflection signal provides the acoustic

absorption spectrum; this is much faster than the conventional point-wise frequency

measurement. Our technique can be called "Opto-acoustic spectroscopy of the second

kind" (OAS II) because it exploits opto-acoustic pulse generation 6 "8 for acoustic

spectroscopy. This should be distinguished from the well known opto-acoustic

spectroscopy 9 (understood to be the first kind), which exploits opto-acoustic pulse

generation for optical spectroscopy.

Our experimental demonstration of OAS II is shown in Fig. 1. A pulsed laser is

used to generate a short-duration acoustic pulse in the gas under study. This is

commonly called a pulsed opto-acoustic (or photo-acoustic) generation 6 which can be

achieved via many mechanisms, including simple optical absorptions and nonradiative

decay, 9 optical breakdown 10 and absorption at a solid surface with subsequent heat
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flow to the fluid in contact. The experimental arrangement in Fig. 1 uses the last

mechanism, which does not require powerful or tunable laser source, but requires an

opaque target surface to be placed in contact with the gas. Here, we use a nitrogen

laser beam at 337 nm with 1 mJ energy and 8 nsec duration as the pulsed excitation

source. The target is a polished silicon wafer which does not absorb the gases under

studyand the optically flat surface produces a plane acoustic wavefront due to the

pulsed laser heating of the Si surface. The laser spot size at the silicon surface is

about 4 mm, which is much larger than the acoustic wavelengths (-0.3 mm at

1 MHz) in the gas presently studied, and diffraction effect of the acoustic pulse is

small. The profile and the propagation velocity of the acoustic pulse can be detected

with short rise-time and high spatial resolution by a tightly focused probe beam 7

which is oriented parallel to the silicon surface (at separation x). In this way, the

whole acoustic wavefront arrives simultaneously at the focused probe beam, causing a

transient angular deflection 0(t) which is uniform across the probe cross section if the

spatial extent of the acoustic pulse is much larger than the focused probe diameter

(true for our present experiment). The probe deflection 0(t) is linearly converted

into an intensity variation signal S(x,t) by a fast photodiode of small active area

located where the probe beam cross-sectional area is much larger. The photodiode and

preamp assembly we used (Analogy Modules Model LNVA-O-S-100 MHz) has a

bandwidth of 100 MHz. The output signal S(x,t) is further amplified by a Tektronix

7854 scope with a 7A24 plug-in (which also provides a single-shot display of S(x,t)),

and then accumulated on a transient recorder (Data Precision Model 6000 with Model

620 plug-in of bandwidth 30 MHz). Typically, S(x,t) can be digitized for a single

laser shot, or averaged for several laser shots for signal/noise improvement. A

built-in fast Fourier transform feature in the transient recorder allows us to obtain the
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Fourier spectrum S(x,w) of the piobe beam deflection signal S(x,t), where w is an

angular frequency. The above measurement is repeated with the separation between

the probe beam and the silicon target changed (by a micrometer adjustment) from x to

x', obtaining another Fourier spectrum S(x',w) corresponding to the probe beam

deflection signal S(x',t). This stepwise measurement at two separations is presently

used to derive the ultrasonic absorption spectrum. A much faster measurement is

possible by using two probe beams 12 at separations x and x' from the target surface

for single-shot detection of the deflections.

As described in a recent opto-acoustic pulse profile study in liquids, 7 the present

probe-beam deflection signal S(x,t) is related to the local acoustic pressure P(x,t)

(with Fourier transform P(x,w)) by

S(x,t) = K 8P(x,t)/Ot (1)

where K is a constant depending on geometry, physical properties of the gas and

detection sensitivity. Fourier transform of Eq. (1) yields

S(x,W) = Kiw P(x,co) (2)

where i is the imaginary unit. The pressure amplitude P(x,w) propagates with a

frequency-dependent absorption coefficient a(&i) and velocity v(w), and so we write

P(x,w) - P(O,w) e-a( W)x+iWx/v(W) (3)

Combining Eqs. (1)-(3), we have

.lnMagS(x,)J - a() (4)
ax 

(4)
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where Mag(S(xw)) is the magnitude of the Fourier transform of the observed probe

deflection signal.

The signal S(x,t) is as given by Eq. (1) only for a sufficiently small size of the

detector in the direction of beam deflection, e.g., this size should be :S 10% of the

diameter of the probe beam at the detector position. In such case, the magnitude and

shape of the signal S(x,t) critically depends on the exact position of the detector;

S(x,t) actually changes phase if the detector is moved along the direction of the beam

deflection, and is nearly zero when it is located at the center of the probe beam

cross-section, as shown in Fig. 2. Most of our experimental data are taken with the

detector suitably located at a wing of the probe beam to maximize signal amplitude.

The delay time td with respect to the firing of the laser indicated in Fig. 2 is

measured for several path lengths x for several gases at 22°C. We find that x changes

linearly with td, and the gradient is the velocity v at the mean Fourier frequency fm of

the acoustic pulse. Some results are given in Table I. For the gases studied at 1

atmosphere and 220C (Ar, N2 , 02, CO 2 , CF2 CI2 , (i.e., Freon 12) and their mixture

with 20 Torr of water vapor), fm is -1 MHz, which is larger than the dispersive

frequencies in the gases studied (except mixture of CO 2 or Freon with H2 0), so that

the data in Table I are the ultrasonic velocities in the "high frequency limits."

While the observed signals S(x,t) for Ar, N2 , 02 or their mixtures with water

vapor do not change significantly when x is changed by - 1 mm, we observe that S(x,t)

for the C0 2 +20 Torr H2 0 mixture changes drastically with x, as shown in Fig. 3. As

given by Eq. (4), the Fourier transforms of the signals exemplified in Fig. 4 for at

least two displacements x provide the ultrasonic absorption spectrum a(w). Some



results for CO 2 and C0 2 +20 Torr H 2 0 mixture at 22*C and 1 atm pressure are given

in Fig. 5. As done traditionally, the vertical axis is absorption per wavelength, i.e., the

product of a(&o) and the wavelength 21r v/w. Our results in Fig. 5 represent the first

ultrasonic absorption spectra obtained all optically in a Fourier-multiplexed manner.

Previous results were obtained by point-wise frequency measurement with the use of

transducers for generation and detection; the long risetimes of most transducers is a

reasou why high frequency data are lacking in Fig. 5. It is already well known 1 , 2 that

"relaxational absorption" of sound at frequency w occurs for an inelastic collisional

rate on the order of w; this is probably the reason for the large absorption feature for

the CO 2 and H 2 0 mixture in the range of -1 to 5 MHz. The inelastic cross-section

for H 2 0 and CO 2 collision is unusually large (close to geometrical cross-section), and

the inelastic collisional rate for the C0 2 /H 2 0 mixture studied is -107 per sec. Such

relaxational ultrasonic absorption at lower H 2 0 concentration (corresponding to lower

frequency absorption) has been observed previously. 13 , 14 ,2 0

This work is supported in part by the Office of Naval Research. We are indebted

to H. Coufal for very helpful discussions.
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Table 1

Some Ultrasonic Velocities in Gases at 1 atm and 22*C,
Measured by Optical Acoustic Pulse Generation and Detection

Pure Gas Gas + 20 Torr H 2 0

Mean Acoustic Mean Acoustic
Gas Frequency Velocity Frequency Velocity

(MHz) (104 cm/s) (MHz) (104 cm/s)

Ar 2.5 3.218(3) 1.5 3.240(8)

N2  2.5 3.512(5) 1.5 3.526(6)

022.5 3.295(5) 1.5 3.312(5)

CF 2CI2  0.7 1.504(10) 0.7 1.524(10)

C0 2 2.5 2.796(3) 1.0 2.752(6)
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Excitation Laser
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Figure 1. Experimental arrangement for the new opto-acoustic spectroscopy of the
second kind. The probe deflection signal is Fourier analyzed, and the difference
between two Fourier spectra at different displacements x provide the ultrasonic
absorption spectrum.
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